
Report No. NAWCADWAR-93041-60 AD-A271 769 /

AN APPLICATION OF THE CEREBELLAR MODEL
ARTICULATION CONTROLLER FOR A SWITCHED
RELUCTANCE ROTOR POSITION ESTIMATOR

,*gARFA~

* b SIk1 N

Jenifer M. Shannon
Air Vehicle and Crew Systems Technology Department
NAVAL AIR WARFARE CENTER, AIRCRAFT DIVISION
Warminster, PA 18974

NO 11993
- -~4Av

NOVEMBER 1992

FINAL REPORT
Work Unit Plan No. IRA ll
Project ID No. 01B1201

Approved for public release: distribution is unlimited

93-26258



NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the
Naval Air Warfare Center, Aircraft Division, Warminster is arranged for specific identification
purposes. Each number consists of the Center acronym, the calendar year in which the
number was assigned, the sequence number of the report within the specific calendar year,
and the official 2-digit correspondence code of the Functional Department responsible for
the report. For example: Report No. NAWCADWAR-92001-60 indicates the first Center
report for the year 1992 and prepared by the Air Vehicle and Crew Systems Technology
Department. The numerical codes are as follows:

CODE OFFICE OR DEPARTMENT

00 Commanding Officer, NAWCADWAR

01 Technical Director, NAWCADWAR

05 Computer Department

10 AntiSubmarine Warfare Systems Department

20 Tactical Air Systems Department

30 Warfare Systems Analysis Department

50 Mission Avionics Technology Department

60 Air Vehicle & Crew Systems Technology Departrr nt

70 Systems & Software Technology Department

80 Engineering Support Group

90 Test & Evaluation Group

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial
products herein do not constitute an endorsement by the Government nor do they convey
or imply the license or right to use such products.

Reviewed By: __________________ Date:
Branch Head

Reviewed By: Date:

Reviewed By: Date:
DirectorlDeputy Director



SECURITY CLASSIFICATION OF THS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFiCATION 1b RESTRICTIVE MARKINGS

Unclassified
Za SECURITY CLASSIFiCATiON AUTHGRITY 3 DISTRJOUTION 'AVAILABILITY OF REPORT

b DApproved for Public Release;
2b DECLASSIFICATION'DOWNGRADING SCHEDULE Distribution is Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NAWCADWAR-93041-60

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Air Vehicle and Crew Systems (If applicable)

Technology Department 1 6012
6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City. State, and ZIP Code)

Naval Air Warface Center Aircraft Division
Warminster, PA 18974-5000

Baý NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

NAVAIRWARCENACDIVWAR 0 1B

Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT ITASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

1 01B1201 IRA11

11 TITLE (Include Security Classificationl

An Application of the Cerebellar Modl Articulation Controller for a Switched Reluctance

Rotar Position Estimator (Unclassified)
12. PERSONAL AUTHOR(S)

Jenifer •I- 9hannon1

l3a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Pi na FROM _Z/q'2 TO 19(2 Novembrx

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
A method of estimating the rotor position of a switched reluctance machine without the

need for a rotor-mounted position sensor has been developed. This method takes advantage
of the information derived from known phase voltage and current waveforms. The information
is fed as the inputs to a neural network, which after being trained, can correctly map the
rotor position to its output. The most accurate mapping results were obtained using a
Cerebellar Model Articulation Controller (CMAC) neural network. The performance of the
neural network has been tested with measured waveforms from a three phase 120 HP switched
reluctance motor. It successfully maps the rotor position with an average root mean square
error of one tenth of a mechanical degree.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
S UNCLASSIFIED/UNLIMITED 0 SAME AS RPT C DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Jenifer M. Shannon 215-441-7216 6012

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*U.S. Government Pfrntlgu Offloam 18"30412

0102-LF-014-6602



NAWCADWAR-93041-60

TABLE OF CONTENTS

A bstract ....................................................................................... ii
L ist of Figures ................................................................................ iv
L ist of Tables .................................................................................. iv

1.0 Introduction ............................................................................. 1
1.1 Background: The More Electric Aircraft Concept ........................... 1
1.2 The Application: Switched Reluctance Machines ........................... 2

1.2.1 Machine Design & Operation ...................................... 2
1.2.2 Advantages of Switched Reluctance ................................ 5
1.2.3 Critical Design Issues ............................................... 5

2.0 M ethod .................................................................................. 8
2.1 The Paradigm: CMAC .......................................................... 8

2.1.1 A Historical Perspective ............................................. 8
2.1.2 The Benefits of CMAC ............................................. 9
2.1.3 The Algorithm ..................................................... 10

2.1.3.1 Input Quantization ......................................... 10
2.1.3.2 ViMual Address Computation ............................ 11
2.1.3.3 Hash Coding Procedure .................................. 12
2.1.3.4 Output Computation ...................................... 13

2.1.4 Hardware Implementation ......................................... 13
2.1.5 Sum m ary .............................................................. 13

2.2 Data Preprocessing ............................................................. 14
2.3 The Importance of CMAC Parameters ........................................ 21

3.0 Results .................................................... 23
3.1 Comparison with Other Paradigms ............................................ 23
3.2 Input Redundancy ............................................................... 25
3.3 Optimized CMAC Network ................................................... 26
3.4 D iscussion ........................................................................ 28
3.5 Conclusions ...................................................................... 29

References ................................................................................. 30
Appendix A: Glossary ....................................................................... 31
Appendix B: Filtered Inputs Used for Training .......................................... 36

n .. -

*. .. . . . . -.... . . . .



NAWCADWAR-93041-60

LIST OF FIGURES

Figure 1.2.1 .a Cross Sectional View of a SRM ............................................. 3
Figure 1.2.1.b Converter Circuitry ........................................................... 3
Figure 1.2. .c Machine Operation ............................................................ 4
Figure 1.2.3.a Magnetic Model Approach .................................................. 6
Figure 1.2.3.b Neural Network Approach .................................................. 7
Figure 2.1.3 CMAC Mapping Scheme ....................................................... 10
Figure 2.2.a Data Columns versus Record Number ........................................ 16
Figure 2.2.b Reordered Data Columns versus Record Number .......................... 17
Figure 2.2.c Stripped Data Columns versus Record Number ............................ 18
Figure 2.2.d Normalized and Filtered Data versus Record Number ..................... 20
Figure 3.1.a Backpropagation Recall Capability .......................................... 23
Figure 3.1.b Radial Basis Function Recall Capability ..................................... 24
Figure 3.1.c CMAC Recall Capability ....................................................... 25
Figure 3.3.a CMAC Network Output ........................................................ 27
Figure 3.3.b CMAC Network Filtered Output .............................................. 27

LIST OF TABLES

TABLE 2.1.3.2 Look-Up Table Example ................................................... 11
TABLE 2.2 Motor Parameters Associated w/ Measured Data Files ....................... 14
TABLE 3.2 Average RMS Errors for Input Redundancy .................................. 26
TABLE 3.4 Average RMS Errors for Different Estimation Methods ..................... 28

iv



NAWCADWAR-93041-60

1.0 INTRODUCTION
The basis for artificial neural networks is a fascinating concept. The idea of

modeling the processes of the human brain on a computer and training this model to learn

and then make decisions sounds like science fiction to those unfamiliar with this area of
artificial intelligence. Indeed, the scientific community is not convinced that an artificial

neuron may develop into a viable component as applicable as the transistor. The future of
this exciting concept is left to the philosopher of science for speculation. The intention of

this paper is to promote an interest in the concept in the hope that more engineers will
become enthusiastic about neural networks and pursue other initiatives for their application.

1.1 BACKGROUND: MORE ELECTRIC AIRCRAFT CONCEPT
The application of a neural network to a switched reluctance machine was conceived

through the machine's crucial role in the More Electric Initiative (MEI). The vision of the
More Electric Initiative is to replace conventional centralized hydraulic systems with fault
tolerant electrical power in order to supply the aircraft loads. Through the implementation

of this concept, life cycle costs will be reduced through improvements in component
reliability. There will be a 30 to 50% reduction in Aircraft Ground Equipment (AGE),

since hydraulic and pneumatic support carts can be eliminated. Major system level
improvements are projected due to improvements of battle damage tolerance,

maintainability, and supportability. Also, safety will be improved by the elimination of
hydraulic maintenance procedures and the elimination of hydraulic fire hazards. Through

exploratory development work in electrically powered flight controls, braking, and
Environmental Control Systems (ECS), it has been shown that by using electrical power,

these systems achieve an enhanced performance.
A Memo of Understanding has been signed to form a National Coalition for the

More Electric Initiative. Members of this coalition include the Navy, Air Force, Army, and
NASA. It has been projected that private industry will spend $400 million on this program

over the next eight years. The majority of these funds will be spent on Independent
Research and Development (IR&D) programs. Existing programs involve the development

of electric hydraulic actuators, electromechanical actuators, electric brakes, advanced
Auxiliary Power Units (APUs), and Switched Reluctance Machines (SRMs).

In addition to industry funded MEI projects, there are a number of contracts being

funded through the tri-services and NASA. For example, a number of contracts are on-
going or undergoing the process of being awarded that directly involve the development of
switched reluctance machines. These contracts include a program entitled the Power
Management And Distribution System for a More Electric Aircraft (MADMEL). The
objective of this program is to develop an advanced electrical power generation and

distribution system demonstrator. This contract has been awarded to Northrop
Corporation; it is the contractor's intention to use switched reluctance machines for the

1
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starter/generators in the demonstrator. Another pertinent contract is the Integral
Starter/Generator Program. The objective of this program is to design a 250kW and a
375kW switched reluctance starter/generator. The 250kW generator will be a compact

design that is externally mounted to the gearbox of the aircraft engine. The 375kW design
is to be integrated around the shaft of the engine, resulting in the elimination the gearbox.
Also, another contract that is to be awarded calls for the design of a 125kW switched
reluctance starter/generator to be built inside an APU. The functions of this machine
include starting of the APU, emergency starting of the main engine, and supplying
emergency power to the flight critical loads.

1.2 THE APPLICATION: SWITCHED RELUCTANCE MACHINE

The existence of a basic design for a switci-ed reluctance machine can be traced

back twenty years. Its commercialization had never been pursued successfully over the
years due to the complexity of its hardware implementation. The power electronics
required for its converter circuitry needed to be capable of switching high currents. Until
recent developments in power electronics, these types of switches were not available [1].
With the development of the Insulated Gate Bipolar Transistor (IGBT) and the Metal Oxide

Semiconductor Controlled Thyristor (MCT), converters have been successfully built. To
date only a few military applications of the SRM have resulted in the development of
prototype machines. Examples of machines built include an integral starter/generator for an
army tank and a switched reluctance motor for an aircraft actuator. This section will
discuss the basic principles of the switched reluctance machine design, its operation, and
critical design issues.

1.2.1 MACHINE DESIGN & OPERATION
A cross section of a typical machine is shown in Figure 1.2.1 .a. This machine has

three phases with six stator poles and four rotor poles. The figure represents the simplicity
of the electromagnetic machine design. This simplicity makes the machine robust in
comparison to conventional machines such as wound rotor machines and permanent
magnet machines. There are no windings required on the rotor, and only a few concentric
coils are required on the stator poles. These stator windings can be connected in series or
parallel depending upon the machine's converter design and its application. In Figure
1.2.1 .a, only a single set of pole windings are shown for simplicity; the windings of
opposite stator poles are connected in series to create a single phase. The other ends of the
windings are connected between the two high power switches in the converter as shown in
Figure 1.2.1.b. The angle of interest, q, is shown in Figure 1.2.1.a as the angle between
phase A's stator pole and a rotor pole.

2
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FIGURE 1.2.l.a Cross Sectional View of a Switched Reluctance Machine

The construction of both the rotor and stator cores consists of a laminated

Vanadium Permendur material. The laminations are required in both the rotor and stator
since the magnetic field will alternate in both parts of the machine.

A typical converter circuit is shown in Figure 1.2.1.b. It has two high power

switching devices per phase leg [2]. The operation of the machine is controlled by the

timing of the pulsing of these switches.

270 Vdc 0
S254 ss

D 2 D4  D6

D PD

3 5

FIGURE 1.2.1.b Converter Circuitry

A significant advantage of this design is its built-in fault tolerance. Should one
phase of the machine be disabled due to a short circuit or faulty switch, this phase can be

de-excited and the remaining phases will be isolated and can continue to supply a reduced

3
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amount of power. The power output under these conditions is reduced by the power
contribution of the disabled phase [3]. The capability of continued operation under a fault
condition is a unique feature of the switched reluctance machine.

The torque of the machine is developed through the magnetic attraction between the
rotor poles and the stator poles. The timing of the magnetic excitation with respect to the

relative rotor position controls the polarity of the torque pulses. Positive torque pulses are
produced as the rotor poles are appn)aching the stator poles. The operation of the machine
is shown in Figure 1.2.l.c. When the inductance has a positive slope, the machine will
behave as a motor. The period during which the windings should be excited to achieve a
maximum torque is shown in the figure as the ideal motor current pulse.

LI LI stator poles

I R rotor poles
I

Inductance

I I
II0

I

Ideal Motor Current

I

II
Ideal Generator Current

Figure 1.2.1.c Machine Operation

Alternately, as the rotor pole is leaving alignment with a stator pole, the torque

pulses are negative. When the machine has a negative sloped inductance, it will operate as
a generator. To achieve maximum electrical power extraction from the machine, the
windings should be excited as the rotor pole is leaving alignment [4]. The angle period
over which the machine is excited to operate as a generator is shown in Figure 1.2.1 .c as
the ideal generator current. In the description of the machine operation, the significance of
the relative position of a rotor pole with the stator pole should be evident.

4
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1.2.2 ADVANTAGES OF SWITCHED RELUCTANCE
The switched reluctance machine proves to be an attractive choice for many

applications due to its high speed capability, its ability to operate in harsh environments, its
good power density, and its fault tolerance.

Conventional aircraft generators are the wound rotor generator and the permanent
magnet generator. In these conventional machines, the stator windings are closely wound
and magnetically coupled. In the eve..t of a short circuit in any one phase of the multiphase
winding, an excessive amount of heat will be generated. If the machine is not immediately

de-energized, the short may propagate to the remaining phases due to the tight interleaving

of the stator coils [ 1]. In a permanent magnet machine, operation is further limited by the
temperature limitations of the magnets. At high temperatures, the rare earth magnets used
in these machines may lose magnetic stability or even become permanently demagnetized.
On the other hand, the rotor of a switched reluctance machine is quite robust in that there

are no windings nor permanent magnets. The rotor is a solid construction of laminated
Vanadium Permendur. The stator windings consists of a few concentric coils; these coils

are isolated from one phase to the other. Due to the simple construction of the SRM rotor
and stator, it is capable of operating in much higher temperatures and speeds than

conventional machines.
The permanent magnet machine has the highest power density of the three types of

machines. The power density of a SRM is from 85% to 95% of the permanent magnet
machine's power density depending upon machine size. This power density is still
relatively high and the other benefits of the SRM will often override the superior power
density of the permanent magnet machine when choosing a machine type for a particular

application.
As described earlier, the SRM has an inherent fault tolerance due to its unique

concentric stator windings. These advantages will make the SRM a superior choice for
many future applications.

1.2.3 CRITICAL DESIGN ISSUES
Although efforts are being made to develop these machines, a number of design

challenges must still be met. The high current switches in the converter circuitry employ a
new technology with design and manufacturing issues yet to be resolved. The rotor iron
losses for the SRM are higher than those associated with conventional machines. These
losses can result -An high trmperatures which will limit the machine's speed capability. The
development of advanced materials for the rotor structure continues to evolve. Also, the
controller for these machines still present significant design challenges.

Specifically, the design issue that is being addressed in this research program
involves the determination of the relative position of a rotor pole with a stator pole. This
relative angle is a necessary input to the machine's controller. In traditional designs, the

5
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relative angle would be measured with a rotor mounted encoder or resolh, er. This additional
piece of hardware presents a reliability risk, especially when the macnine is expected to
operate in harsh environments such as during the application for an integral

starter/generator. The position sensor also creates a single point of failure for the system.
An alternative design involves sending phase voltage and current values to the

controller and inputting these values to a magnetic circuit model which would theoretically
predict the relative angle. This design is being pursued at General Electric's Corporate

Research & Development Division [71.
A schematic of this approach is given in Figure 1.2.3.a. For each stator pole of the

machine, the flux linkage is estimated by integrating the difference betweei the measured
phase voltage and the product of the measured phase current and the winding resistance.
Also, the magnetomotive force (mmf) can be derived from the measured phase current.
The derivation of the reluctances which are represented in the magnetic circuit model of

Figure 1.2.3.a as rectangles, is mor-. complex. These reluctances are analogous to
resistances in an electrical circuit. They depend upoa the machine geometry including such

parameters as air gap distances, pole tip lengths, and stack thicknesses; they also depend
upon the materials' permeabilities. These permeabilities are calculated by a saturable
material model. Also, a finite ele-nent analysis is required for the calculation of the machine
reluctances. The fluxes, mmfs, and reluctances are then incorporated into a magnetic

circuit from which the magnetic model mesh equations are derived.

Magnetic Circuit Model

I I 0

Macin mes eqain

Geometry.I

Saturable

wMaterialI

FiniteI
Element

Cofficients

Figure 1.2.3.a Magnetic Model Approach
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The airgap reluctance is the only variable which is a function of the rotor angle;

therefore, this reluctance is isolated and the a',gle is solved for. Tiais process must be
under"-I -n for each set of measured voltages and currents that are samnpled.

Certain problems with this approach exist. The computational power required to
perform the calculations will require a Digital Signal Processor (DSP) which may be
viewed as overkill for this particular problem. The extensive computation limits the
performance capability of the machine. The delay associated with the computation will

impact the control loops of the generator control unit and create additional design
challenges. Also, the model's algorithm breaks down in the event of a fault condition.

General Electric is currently addressing these design issues.
Another app-oach to the problem of determining the relative angle without using a

position sensor is the basis of this research paper. This approach uses the same voltages
and currents as the model approach uses. These parameters are used as inputs to a neural
network (See Figure 1.2.3.b).

L - -- II

FIGURE 1.2.3.b Neural Network Approach

A neural network approach should require significantly less computationa! effort
than the magnetic circuit model method. The operations involved in the mapping

calculations are additions, multiplications, and simple look-ups as opposed to complex
integrations, differentiations, and finite element analyses. Due to the simplicity of the

mappings, the network should be able to provide a real-time response. As for operation of
the network under fault conditions, neural networks are known to have an inherent system
redundancy. Netwc(rks have been shown to correctly map even with faulty or rmissing
input signals. For these reasons, the neural network approach should be the least

7
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compatational, most responsive, and fault tolerant approach for rotor position estimation.

2.0 METHOD

A number of different artificial neural network paradigms were investigated for the
application of a rotor position estimator. It was concluded that the r.:,work would be a

feedforward heteroassociative type The candidate paradigms chosen were

backpropagation, Radial Basis Functions (RBF), and Cerebellar Model Articulation

Controller (CMAC). The results from these three types of networks are summarized in

Section 3. A detailed description of the results from the backp '-pagation and radial basis

function networks can be found in the Independent Study Report [6]. The best results
were obtained with the CMAC network, so this network is described in detail in the

following section.

2.1 THE PARADIGM: CMAC
2.1.1 A HISTORICAL PERSPECTIVE

In 1972 a neurophysiological model was first described by James S. Albus in his

Ph.D. Thesis at the University of Maryland. The theory behind the model implies that the

structure which is responsible for reasoning and decision-making in the human brain is
similar to the sensory/motor structure. Also Dr. Albus postulated that the reasoning
process and sensory/motor process are not unique separate systems but belong to one

interacting system. The functions of thinking, decision-making, sensing, and moving are

all interdependent [7]. An simple example of this interdependence is when a child touches

a hot stove, the sensory experience (the pain felt on his hand) is associated with the motor
action (touching the stove) and is stored as a learning experience so that a decision can be

formulated by his thought process (don't touch the stove).
Neurophysiological evidence shows that many biosensorimotor control structures

in the brain are organized using neurons that possess locally-tuned, overlapping receptive

fields. CMAC and Radial Basis Functions ate two examples of artificial neural networks

that also use these type of receptive fields.
The name of this model varies in the literature but its acronym, CMAC, remains the

same. In earlier work, CMAC stood for the Cerebellar Model Arithmetic Computer and is

described as a computing device which accepts an input and through a series of mappings

will produce an output. At some point, as the model was applied to robotic control
problems, its acronym inherited a new meaning; namely, the Cerebellar Model Articulation

Controller.

Current work on CMAC is ongoing at the Intelligent Systems Group of the
Robotics Laboratory at the University of New Hampshire and in the Human Information
Processing Group of the Department of Psychology at Princeton University [8,9,10]. The

8
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most active sponsors for this type of work are the Advanced Research Projects Agency
(ARPA), the National Science Foundation, and the Office of Naval Research (ONR).

2.1.2 THE BENEFITS OF CMAC
CMAC is advertised as being capable of learning nonlinear functions extremely

quickly. It offers an alterative to Mutilayer Perceptron networks such as backpropagation.
In backpropagation, all the weights are updated at each training presentation; this is called
global training. In CMAC, only the weights selected by the training vector being presented
are updated; this is called local training. Global training is more likely to distort the details
of the borders of the classes, whereas local training allows one part of the input space to be
trained without corrupting what has already been learned in other areas of the space.
Global training also slows the rate of learning. Besides the obvious disadvantages of a
slow learning rate such as long and expensive computer training times, a slow learning rate
makes on-line learning unrealizable and also imposes the need to use small networks. For
these reasons, globally trained networks can not be used for many complex problems.

Global training also makes the accuracy of the output function sensitive to the presentation
order of the training data.

CMAC utilizes the adaptive Widrow-Hoff Least Means Square (LMS) learning
rule. The error surface is quadratic so that the search results in a unique minimum. One of
the primary complaints with backpropagation learning, is the occurrence of many relative
minimums. The search for the solution can become trapped in a relative minimum and the
solutions never reached. The Widrow-Hoff learning rule updates the weights at each
presentation of a new training vector by the following equation:

SW = ( P/C )( YdI - WoTX 1 )

where Sw is the change in the weights, P is the training factor which can be adjusted

between 0 and 1, c is the number of mappings, YdI is the desired output for the ith input
vector, w0 is the original weight vector, and xI is the ith input vector of the training set.

Since CMAC uses a linear output layer, it obeys superposition. By superposition,
if a set of weights wI produces the nonlinear function f1 (x) and the set of weights w 2

produces the nonlinear function f2 ( x), then the set of weights w 1 + w2 will produce the
function f1 (x) + f2 (x). This property makes it possible to characterize the ability of a
network to produce a class of functions of given dimension, weight size, and
generalization. Superposition also permits the paralleling of many small CMACs to
perform similar functions [8].

9
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2.1.3 THE ALGORITHM

The method of implementing CMAC is detailed in the functional schematic, Figure

2.1.3.a. For simplicity, this figure shows only three inputs and one output, but these

variables are adjustable. The inputs are x = {xI, x2 , x3 ) and the output is y.

input values

Xi3  - .ut alue quantization weight table output

X Q mapping S au

qI q 2  q3  segment
V V V mapping W_

S~~hash coding /

I 

W3

V 3 V31- I V32 IV33 P D

virtual addresses
addresses

FIGURE 2.1.3 CMAC Mapping Scheme

The CMAC algorithm employs a series of intermediate mappings to convert the

inputs to the desired output [11]. These mappings are referred to as input quantization,

virtual address computation, hash coding, and output computation.

2.1.3.1 INPUT QUANTIZATION
The input quantization involves a normalization of the inputs based on the

maximum and minimum values of the inputs. For this particular implementation, the inputs

are always normalized between 0 and 1. A resolution, r is chosen such that each element

of an input vector can be placed in a bin. For example, if the resolution is 1000, there are

1000 possible bins each of equal width into which the inputs can be placed.

2.1.3.2 VIRTUAL ADDRESS COMPUTATION
The next mapping occurs through a virtual address computation. A set of address

10
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segments is computed for each element of the input vector. Each address segmeri is found
in a look-up table. An example of such a table is shown in Table 2.1.3.2.
The number of columns in the table corresponds to the resolution chosen for the input
quantization. The number of rows is equal to m, the number of mappings chosen for the
network. The number of mappings is also the number of weights that will be updated upon

each new presentation of an input vector.
The contents of the table are integer indices. The table is constructed by filling the

rows from left to right and top to bottom with integers starting with an index of one.
Moving through the table, the index is incremented by one after the number of positions in
the table filled by that index reaches the overlap. The index is always incremented at the
beginning of each row. This index is repeated for one column more than the above row's
first index unless the above row's index was repeated for the full overlap in which case the
index is only used in one column slot.

-"-- RESOLUTION Do

1 2 1 4 1516 7 38 9 10

1

3

m=4
overlap = 3

TABLE 2.1.3.2 LOOK-UP TABLE EXAMPLE

The overlap is a variable that is chosen during the design of the network. The

overlap determines the amount of generalization that occurs between the input variables.
This variable is one of the unique features of CMAC. By having control over the amount
of generalization, the boundaries of the classes or hyperspaces can be well controlled.

An address segment is assigned from the table in accordance with which bin the
input element falls. Each input element will be associated with m address segments, a
segment from each row of the table. After the address segments are computed for each
element of an input vector, they are concatenated to create a single virtual address for the
input vector [ 12]. Following a single iteration, there are m virtual addresses for each input

11
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vector in the training set.
Table 2.1.3.2 can be used to show how a virtual address is computed and how the

choice of the overlap will dictate the generalization of the network. Three quantized input
vectors, q. = (1,5,9), qb = (2,5,10), qc = (8,1,3) can be used to illustrate the
address computation. For each quantized input vector, the corresponding sets of
concatenated segments extracted from the look-up table are given below.

qa 1123) qb {124} qc {311)

f578) (678) (856)
(91012) (91012) ( 11910)
1131415) (1314161 (151313)

Since qa and qb were close in input space the overlap factor allows them to share a
common virtual address segment, (91012). Also note that vector qc is not close to either
qa or qb in input space and it will not share any common virtual address numbers.

2.1.3.3 HASH CODING PROCEDURE
The number of possible virtual addresses is mvd, where v is the number of

possible input values and d is the dimension of the input vector. For practical systems, this
many addresses represents an unrealizable memory size. In fact, this many memory
locations would not actually be used at one time. For these reasons, CMAC uses a hash

coding to reduce the number of required memory locations.
For this particular implementation of CMAC, the method of hash coding uses a

Random Number Generator (RNG); the RNG chosen utilizes the subtractive method. The
virtual addresses are used as seeds to this RNG. The output of the RNG is a real number

between 0 and 1. This number is then converted into an integer within the range of the
number of weights chosen for the network. The number of weights is specified in
kilobytes and it determines the size of the weight table. The weight table is a set of physical
addresse, in which the value of each weight is stored. For multiple outputs, the weight
table is divided into blocks for each output, so that an independent set of addresses is
available for each output variable.

The method of hash coding chosen greatly influences the performance of the
CMAC network. In using a pseudo-random number generator, the creation of unwanted

collisions is inevitable. The collisions occur when two unique seeds result in the
generation of the same random number. When this happens, the same weight location is

accessed when two unique locations should be accessed. This will result in a corruption of
the weight values. Although these collisions are unavoidable, since no RNG is truly
random, they can be minimized by using a RNG that maximizes the discreteness of the
random values returned. During the implementation of this CMAC algorithm, different

12
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RNGs were tested including the single linear congruential, the combination linear

congruential, and the subtractive generators. The best results were obtained using the
subtractive RNG.

2.1.3.4 OUTPUT COMPUTATION

The output is computed as a linear summation of the weights associated with the
input vector. Initially, the value of the weights are set equal to zero. Following the first

presentation of data, the computed output will be zero, so that the weights affected by the
input vector are adjusted by the desired output valte.

Upon the second presentation of an input vector, the same process is performed in
the quantization of inputs, the virtual address computation, and the hash coding to physical

addresses. The output is then computed by summing the values stored in those weight
locations which were identified by the hash coding. If the second input vector is far in
input space from the first input vector and no collisions occur during the hash coding, then
this summation will again equal zero and those weight values will be adjusted by the

desired output. On the other hand, if the two input vectors are close in input space or if
collisions occur from the hash coding procedure, then some weight locations will be
shared. This sharing results in a non-zero computed output and the weight locations will
be adjusted by the difference of this computed output and the desired output.

2.1.4 HARDWARE IMPLEMENTATION

CMAC can be practically realized in hardware by the use of logic cell arrays. VLSI
versions are feasible. An example of a product that is currently available is manufactured

by Shenandoah Electronic Products of Newington, NH [13]. Their CMAC-AT is a
memory board for an IBM PC-AT compatible computer. The board is made-up of CMOS

field programmable gate arrays. The board can be configured for up to 8 independent
networks. It holds one million 8 bit adjustable weights or 512K 16 bit adjustable weights.
The size and number of inputs and outputs and the overlap are all adjustable parameters.
Typical response times for a network with 32 integer inputs and 8 integer outputs are on the

order of 200 to 500 microsecond.

2.1.5 SUMMARY
The significant properties of CMAC can be summarized as follows. CMAC accepts

real inputs and provides real outputs. Even though the inputs are quantized, the resolution

is adjustable so that any degree of accuracy is possible within the memory limitations of the
computer. CMAC maps with local generalization. In other words, input vectors that are
close in input space will result in outputs that are close in output space. CMAC has the
property that large networks can be trained .>, :'a'::cal time. This is due to the fast learning
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rate or its quick convergence and due to the fact that there are a small number of

calculations per output even if there are a large number of weights. CMAC uses the LMS
learning rule of Widrow and Hoff. This algorithm uses a gradient search which has a

unique minimum so that the problems associated with backpropagation and relative
minimums are non-evident. CMAC obeys superposition in the output space, and it has a

practical hardware implementation.

2.2 DATA PREPROCESSING
The data for training and testing the network was obtained from a 120 hp, 6/4 pole

switched reluctance motor. Motor parameters measured included three phase voltages,
three phase currents, the rotational speed and the relative rotor angle. The phase voltages
and currents were measured with existing sensors in the machine's converter circuitry. The

speed and angle were measured using the conventional resolver of the machine. The data
was recorded using a data acquisition system with a 25 KHz sampling rate and a 16 bit
resolution. Since the data was measured with a data acquisition system, the discrete points

were recorded as integers over the range +/- 32768. For interpretation purposes, the data
was converted to real numbers in units of amps for current, volts for voltage, rpm for

speed, and mechanical degrees for angle. (These are the units used in Figures 2.2.a -
2.2.c.) The voltages and currents are used as the six inputs to the neural network and the
rotor angle is the desired output. The rotational speed was not used as an input, since it is

derivable from the rotor angle for a constant sampling rate.
Six files of data were recorded; each containing information under different

motoring operating conditions. The differences in the motor operations for each file are

listed in Table 2.2. The operating voltage of the machine was 100 Volts Direct Current.
Data was taken under two operating speeds, 7000 rpm and 15,000 rpm. The loads applied

to the motor resulted in current drawn ranging from 75 Amps to 300 Amps.

Rotational Voltage Peak

File Name Speed Level Current
(rpm) (Volts) Drawn

(Amps)

M7KIOOV.075 7000 100 75

M7KI00V.150 7000 100 150

M7KI00V.225 7000 100 225

M7K100V.200 7000 100 300

M15KI00V.200 15000 100 200

M15K100V.300 15000 100 300

TABLE 2.2 Motor Parameters Associated With Measured Data Files
14
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Preprocessing of the raw data was necessary due to an excessive amount of

measurement noise. The preprocessing procedure became quite time consuming.
Alternative strategies for processing the data in order to optimally train the network were

examined. The data processing procedures performed on the raw data included reordering,
stripping, filtering, and normalizing. The order of the implementation of these processes

did not impact the performance of the network. However, each process proved necessary
in achieving a sufficient data set for training.

Each data file contained voltage and current waveforms measured over a large
number of rotor revolutions under varying speed and load conditions. An example of the

each data column plotted verses its record number is shown in Figure 2.2.a. There were

4095 records in each file, but only the first 250 records are plotted in Figure 2.2.a.

The first preprocessing procedure involved a reordering of the data. The data was

provided in the order that it was measured. In order to get a better visual grasp of the data,

the records of the file were rearranged in order of increasing rotor angle. Figure 2.2.b

shows each data column plotted versus the record number in its new order.
The next procedure termed stripping, deleted all unnecessary or unusable data from

each file. First, the column containing the speed data was removed since this information
would not be available for the neural network to use as an input. Next, the first period of

the waveforms for each column was removed because the noise from this data was much

greater than the other periods. Of the remaining three periods of data, if a single data point
was thought to be capable of resulting in an unrealistic distortion of the waveform after it

had been filtered, it was also removed. An example of the stripped data plotted as columns

verses record number is shown in Figure 2.2.c.
The next procedure involves a conversion of the angle data from mechanical

degrees to electrical degrees. The data files at this point contain three electrical periods, but

the angle column ranges from 90 to 360 mechanical degrees. The angle values are thus

converted into three sections of data from 0 to 360 electrical degrees.
Next, all data is normalized since the CMAC module requires normalized inputs.

Each maximum and minimum value of the voltage, current, and angle waveforms is found.
Then, these waveforms are normalized between 0.0001 and 0.9999 by the following

formula:
Ynew = scale x Yoid + offset

where YoId is the original data point, yew is the normalized data point, and

scale = (0.9999 - 0.0001) / (max - min)
offset = (0.0001 x max - 0.9999 x min) / (max - min).
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The next procedure performed is a filtering process. A number of digital filters

were tested. It was discovered that a filter resulting in the smoothest waveforms did not
result in an optimal training set for the neural network. The more distinguishable the

waveforms, the better the network's performance. The final choice for a filter was a 10-
point finite impulse response low pass filter with a stopband cutoff frequency of 0.1 Hertz.

An example of the normalized and filtered waveforms is plotted in Figure 2.2.d.
The final procedure is a separation of the data into training and testing data. In

order to assess the network's ability to generalize, different data must be used for training
and testing. A single training vector consists of the desired output - the electrical angle and

the six inputs - three currents and three voltages. The training file consists of every other
vector in the filtered data files. The remaining points make up the testing file. All of the

processed data used for training is plotted as input verses output. These graphs are

included in Appendix B.
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2.3 THE IMPORTANCE OF CMAt& PARAMETERS

In the implementation of CMAC, there are a number of design parameters that c.n
be adjusted for different applications of a CMAC network. These parameters are me
rollowing: weight table size, number of training vectors, resolution, overlap, number of
mappings, training factor, minimum average root mean square (rms) error, minimum delta

error, number of iterations, weight adjustmcilt tolerance.
The weight table size is the number of kilobytes that will be allocated by the

program to store weight values. The actual number of locations that will be available for
storage can be calculateu as follows:

number of locations = (weightstable_size x 1024) / sizeo(float).

The size of the floating point number is dependent upon the machine on which the program

is running and the compiler. During this investigation, the program was run on both a
Macintosh SE/30 and a Sun 630 MP Woxkstation. i- both cases, the size of the floating

point is 4 bytes. So, for example, if the weight table size chosen is 1 megabyte, then the
number of locations available for weight storage would be 262,144.

The number of vectors used for training, n, should be optimized. In general, the
more vectors used for training, the better the network will generalize. However, if the

vectors are closer in input space than the required accuracy of the network, then not every
vector needs to be used for training. If the unnecessary vectors are removed from the

training set, then the training time can be reduced.

The resolution is the number of bins that will be available for the quantization of the
inputs. The greater the resolution, the greater the accuracy of the network mappings.

The overlap is the number of bins that will be grouped with the same index in the
look-up table during the virtual address computation. The overlap can be thought of as the

width of an individual neuron or the size of the neuron'f neighborhood. When adjusting

the resolution or the overlap, the other parameter should be taken into consideration
because the relationship between these two parameters determines the amount of

generalization that the network is capable of performing. It should be noted that the size of
every neuron is not necessarily equal -o the overlap. (See discussion of 'fable 2.1.3.2).

The number of mappings chosen is the number of weights that will used in the
calculation of the outDut for a given input vector. By increasing the number of mappings, a

greater percentage of the weight table will be used and a greater number of collisions will
occur.

The training factor is used to accelerate or decelerate the learning process. If the
process is too fast, the errors may overshoot and continue to increase out of control. The

highest tolerable training factor should be used in order to minimize training time.

The program can be exited in three possible ways: by reaching the minimum
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average rms error, the minimunm delta error, or the maximum number of iterations.
Whichever of these parameters is reached first will result in a termination of the training.
The average rms error is calculated as follows:

n 2
err = (out - out )

rns |=1 Ic Id

n

where OUtk is the sum of the weights associated with the ith input vector, and OUtid is

the desired output associated with the ith input vector. A running sum is kept of the
squared difference between the computed and desired outputs over the entire training set.
The square root of this sum divided by the number of training vectors is the average rms

error.
The delta error is simply the difference between the average rms error of the

previous iteration and the average rms error of the current iteration. When the delta error
becomes very small, the weight adjustments are near negligible and the performance of the
network will not be improved with additional iterations.

The delta error and the rms error are good indications of the training performance.
If these numbers are steadily decreasing, the network is training successfully. The errors
are also indications of the network's mapping performance. If the errors are small, the
network will be capable of recreating the results of the vectors used in training. The ability
of a network to reproduce mappings with which it is taught is termed the network's recall
capability.

However, the errors are not good indications of how well the network will

generalize. Generalization must be measured by testing the network with unique vectors
that were not used for training. The convergence of a CMAC network depends upon the
smoothness of the function being trained within the neighborhood over which
generalization occurs. If the function varies greatly or is discontinuous within a

generalization neighborhood, the rms error may not converge to an acceptable value.
The maximum number of iterations is self-explanatory. This parameter is useful for

running batch jobs overnight. For example, if a single iteration is known to take one hour,
by setting the number of iterations to twelve, the results will be ready twelve hours later.

The weight adjustment tolerance is the minimum difference between the computed
output and the desired output that will warrant a weight adjustment. By including this
tolerance in the training process, unnecessary adjustments can be avoided.

A characteristic of the network which is determined at the termination of the

program is the percentage of memory used for the weight table. If this percentage is high,
there are probably too many unwanted collisions, and the size of the weight table should be
increased or the number of mappings should be decreased.
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3.0 RESULTS
In order to initially test the feasibility of possible network paradigms, a single set of

data was selected to train the different networks. At first, in order to select the paradigms
with the most promise, only the networks' recall capability was examined. If the recall

capability proved satisfactory, then its generalization capability was examined.

3.1 COMPARISON WITH OTHER PARADIGMS
Three types of networks were identified as possible paradigms: backpropagation,

radial basis functions, and CMAC. A great deal of effort was extended on the
backpropagation method. Obtaining meaningful results proved to be quite time consuming

due to the long training times associated with backpropagation. Networks could train for
a period of three to four days before useful results could be analyzed. The

backpropagation method's recall capability was extremely poor without the use of past
input information. With 3 currents and 3 voltages, there are 6 instantaneous inputs

available. However, the network required knowledge of the seven previous measurements
(t, t-1, t-2, ... , t-7) in order to predict the desired output. For this reason, there are 48
inputs to the network. In general for the backpropagation paradigm, the more complex the
mapping, the more neurons or elements are required for the middle layers of the network.

With the algorithm used in this research, the maximum number of elements

available was ninety-five. The middle layer and output layer utilize a sigmoid function.
Figure 3.1 .a shows this backpropagation network's recall capability. The measured output

of the network is plotted in comparison with the ideal output. The network's performance
worsens at the beginning and the end of the electrical cycle. This poor performance is

attributed to the sharp discontinuity here in output space.

100

BACKPROPAGATION 8os

Three Layer Network 60-
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FIGURE 3.1.a Backpropagation Recall Capability
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The radial basis function network is quite different from the backpropagation
network, in that the output layer is a simple summation. This network structure allows
training to be performed by a simple linear regression technique. This method of training is
not nearly as time consuming the backpropagation method, so results can be obtained
relatively quickly.

The RBF network is trained locally, rather than globally. In other words, each
neuron in the middle layer of the network covers a portion oi the input space. A random
technique is used to determine the center of each neuron and its width. This technique
works quite well if the network's input data is uniformly distributed over the input space.
However, since the data for this particular application is not uniform, this technique proved
to be less then satisfactory. Alternative techniques for determining the neurons centers are
plausible, but would require considerable effort to implement. Prior to pursuing these
avenues, alternative paradigms were investigated. The recall performance for the RBF
network is shown in Figure 3.1 .b by plotting the measured network output with the desired
output.

100- 100 desired

RADIAL BASIS 80
FUNCTION 6o j

Three Layer Network 40
6:100:1

& 20

Localized Learning o"
Gaussian Function

S -20"
0 169 338 507 676 845 1014

Step Number

FIGURE 3.1.b Radial Basis Function Recall Capability

The next paradigm investigated was the CMAC network. Like the RBF network,
training time was relatively short as compared to backpropagation. Also, as shown in
Figure 3. 1.c, CMAC's recall capability far exceeded the capabilities of the other paradigms;

the difference between the desired output and the network's measured output are
indistinguishable. Following the discovery of this network's superior capability, all
research efforts were redirected to focus on this particular paradigm.
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FIGURE 3.1.c CMAC Recall Capability

3.2 INPUT REDUNDANCY
As described in Section 1.2.3, the fault tolerance of the switched reluctance system

is a critical design issue. It was noted that in the magnetic circuit niodel approach for rotor
position estimation, the algorithm failed when the machine was under fault conditions. A
major advantage of switched reluctance is the isolated winding structure which allows
continued operation under fault condition, so it would be extremely detrimental to the
system design if the estimation technique eliminates this advantage. It was anticipated that
a neural nztwork approach may be capable of providing a correct rotor position estimation

given a faulty or missing sensor. At this stage in the network design, an investigation into
this claim was initiated.

The maximum number of available inputs to the network for this application is six.
A number of different combinations of two, three, and four inputs were tested. It was

determined that only three inputs (half of the available inputs) were required for a
successful mapping. The only restriction is that two of the inputs must be current
waveforms; the third waveform may be either the third current waveform or any of the
voltage waveforms.

An example of the accuracy achievable with only three inputs is shown in Table
3.2. The two test cases compared in the Table were trained with six inputs and with three
inputs. The data used for training was from a single electrical cycle of a single motor
parameter case. Each case was trained on the same CMAC network for ten iterations. In

general, no significant difference between the performance of the network trained with
three inputs versus six inputs was observed.
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TABLE 3.2 Average RMS Error for Input Redundancy

Number Recall RMS Error Generalization
of RMS Error

Inputs (Mech. Degrees) (Mech. Degrees)

3 0.001032 0.002386

6 0.001257 0.002365

3.3 OPTIMIZED CMAC NETWORK
Following the observation of CMAC's excellent recall performance, its

generalization capability was then assessed. As stated earlier, a unique feature of the
CMAC allows control of the amount of generalization via adjustment of network

parameters. There is a tradeoff, however, between the amount of generalization and
network resolution.

In working with the other network paradigms (backpropagation and RBF), only
data from one electrical cycle from one case of motor parameters was used for the training
set. Adding the five sets of waveforms measured under different motor parameters to the
training set would make each network's mapping increasingly more complex. A new
waveform set (using three electrical cycles in each set) was added to the training set for the
CMAC network one at a time. The network's parameters were adjusted accordingly, until
all six sets of waveforms had been included.

Since only three of the four electrical cycles were uncorrupted by the data
measurement process, only data from these three cycles were used for training and testing.
So, Figure 3.3.a shows the output of the CMAC network for three cycles of the six sets of
data (eighteen periods). Note, the Figure shows the network's generalization capability
since the data used for testing was different than the data used for training.

The calculated average rms recall error was only 2 one thousandths in mechanical
degrees and the generalized rms e-ror was a tenth of a degree. However, the maximum

errors are large at the discontinuitills V,-I output space as was evident when measuring recall
capability in the backpropagation and radial basis function networks. Using a Finite
Impulse Response (FIR) filter, the average errors can be slightly reduced. Figure 3.3.b
shows the filtered output.
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FIGURE 3.3.a CMAC Network Output
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FIGURE 3.3.b CMAC Network Filtered Output

The FIR filter used was a Hamming-window lowpass linear phase filter with a

cutoff frequency of le-6 and an order of twenty-nine. The filter is applied in a non-causal
manner that produces no phase distortion and minimizes startup transients. Filter design
and implementation were performed using the Signal Processing Toolbox from the
MATLAB software package.
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3.4 DISCUSSION
The rms error for the relative position of a rotor pole with a stator pole is usually

provided in mechanical degrees which generically is more meaningful. Electrical degrees

are of particular interest for specific machine designs. In the machine used for this
research, since there are four rotor poles, the electrical period is essentially ninety
mechanical degrees and the rms error is four times greater in electrical degrees.

The errors are shown in Table 3.4 for the conventional rotor-mounted position

sensor, the results reported by General Electric with their magnetic model method and the
results achieved by this neural network method. It should be noted that the General Electric
numbers were calculated with only three points per electrical period; the neural network
numbers were calculated with over one thousand points per period. The true representation

over the entire electrical period of this error over is not clear with only three points sampled
per cycle. The neural network approach appears to offer a more accurate estimation of the
relative angle over the other two approaches.

TABLE 3.4 Average RMS Errors for Different Estimation Methods

RM &,RR.0R RMERRR
METHOD (Mechanical Electrical

Degrees JDegrees

Rotor-mounted
position sensor 0.3 1.2

Magnetic Model - 4.8

Neural Network 0.116 0.465
(unfiltered)

Neural Network
(filtered) 0.097 0.388

It should be noted that the difference in the average RMS error between the filtered
and unfiltered neural network outputs is not substantial. A systematic study of the required

accuracy for the specific switched reluctance machine design should be performed. The
additional output filter should only be incorporated into the network's design if such a

study warrants.
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3.4 CONCLUSIONS

An investigation of the application of neural networks for switched reluctance rotor

position estimation resulted in the identification of an optimal network design based upon
the Cerebellar Model Articulation Controller. The performance of this CMAC design far

exceeded the performance of the other feedforward networks examined.
The results of this design was compared to the results of other approaches to rotor

position estimation, namely a position measuring device and the magnetic circuit model
method. Based upon the results comparison of the average rms errors between the

different approaches to rotor position estimation, the neural network approach appears to
provide the most accurate estimation. The CMAC network was modeled on a personal

computer and a Sun workstation. The time required for a single mapping was a fraction of
a second. If the CMAC network is implemented in hardware, this mapping time could be

substantially reduced [ 14]. The computational effort required for the network is minimal,
and initial investigation into the network's redundancy capabilities is promising.

Future efforts will be directed towards obtaining additional motor parameter cases

and examining the effects of extreme motor conditions upon the voltage and current
waveforms and the network performance. Future efforts will also be required to determine

the feasibility of the neural network approach to estimate rotor position during motor

starting.
Input redundancy will be further analyzed. In its initial investigation, the networks

were trained to expect only three of the six inputs and then map the correct output. In
future tests, the network will be trained to expect six inputs, but three of those inputs will

be intentionally corrupted so as to more realistically simulate a fault condition. If measured
machine data from a fault condition is obtainable, it will be used in this capacity. If

continued success is noted with this research, the next step will be to investigate a hardware
implementation of the CMAC design.

The application of neural networks to this particular problem demonstrates the
viability of neural networks beyond applications of pattern recognition and signal

processing. It is hoped that these efforts will continue and that the benefit of applying

neural networks to engineering problems will flourish.
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airgap: A separating space between two parts of magnetic material which serves as a path
for magnetic flux.

alignment: The point at which a rotor pole is lined-up with a stator pole and the magnetic
circuit reaches saturation at its rated phase current and the maximum inductance is reached.

backpropagation: A neural network model consisting of a number of layers of neurons.
The hidden layers utilize a sigmoid transfer function to model the nonlinearities of the
mappings. The model uses a learning technique which can result in an undesired network
convergence to a local minimum.

Cerebellar Model Articulation Controller (CMAC): a mathematical
neurophysiological model of the cerebellar cortex which is capable of mapping highly
nonlinear functions. CMAC has a local generalization property, obeys output superposition
principle, trains quickly, and can be efficiently implemented in hardware to perform real-
time mappings.

collision: An undesirable overlap in output space due to limitations of the hash coding
procedure. Collisions can be limited by increasing weight memory size.

convergence: The reaching of a desired solution through a neural network iterative
error-correction training procedure.

excitation: The process through which a field current is supplied to the magnetic circuit
such that a flux is produced to link to the stator windings and induce the phase voltage.

fault tolerant: The ability of a component or system to continue to performs its intended
function given the event of a subcomponent or subsystem failure. Specific fault tolerance
of a neural network is the property that allows the system to function and gradually degrade
when a small number of processing elements have been destroyed or disabled.

flux linkage: The product of phase current and the inductance in a magnetic circuit.

generalization: The ability of a neural network to generalize from the input/output
examples it was trained on to produce a reasonable output from a previously unseen input.

global learning: A form of learning associated with backpropagation which tends to
blur the details of weight updating. The learning process is analogous to fitting a low-order
polynomial through a set of data points.

gradient search: The method of minimizing the mean squared error of the network by
moving down the gradient error curve. In a simple system, the error curve is a smooth
paraboloid. In this case, the network would be guaranteed to eventually reach the bottom
of the curve. However, in the realistic case, there are valleys and hills (local maxima and
minima) that the network must negotiate before finding the lowest point.

hash coding: A many-to-one mapping of the virtual address to a physical address.

heteroassociative: A type of neural network which requires both a training input and a
corresponding desired output. This type of network expects that the input and output will
be different. Backpropagation, radial basis function networks, and CMAC can all be
trained as heteroassociative networks.
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inductance: The phenomena through which a current in a magnetic circuit produces a
voltage that is proportional to that current. The parameter of inductance is a proportionality
constant that depends on the geometric features of the magnetic circuit.

input quantization: The quantization of network input values. This quantization allows
a generalization of like input values.

Insulated Gate Bipolar Transistor (IGBT): A voltage driven field effect device
which has a high current density capability and an operating frequency of up to 20 kHz.
integral starter/generator: An electrical machine that is integrated with a gas turbine
aircraft engine. The desired mounting point for the machine is the high speed compressor
shaft.

learning rate (Beta): A number between zero and one which is used in the weight
adjustment calculation which controls the rate of network learning.

least mean square rule: The neural network learning rule which is also called the delta
rule. The rule calculates the amount the weight should be adjusted as the product of the
learning rate and the difference between the desired network output and the actual output.

local learning: The type of learning associated with radial basis functions and CMAC in
which utilizes neurons with locally-tuned overlapping receptive fields. Local learning is
analogous to fitting a least-squares spline through a set of data points using piecewise
polynomials. Advantages of local learning are relatively fast learning and the ability to train
in one part of the input space without corrupting another part.

magnetomotive force: The source of the magnetic field in the core of a magnetic
circuit. This force can be expressed as the ampere turn product, the number of winding
turns multiplied by the current flowing through the winding.

Metal Oxide Semiconductor Controlled Thyristor (MCT): The metal oxide
semiconductor adds the ease of gate control to a device which is already capable of high
voltages and high currents. The device has a junction temperature of 200 degrees Celsius
and a switching capability of 30 kHz.

minimum average root mean square error: A CMAC parameter which represent s
the network's performance threshold at which training is ended.

minimum delta error: A CMAC parameter which is the minimum difference between
the average rms error of the current iteration and the error of the previous iteration. When
the network reaches this set minimum training is stopped.

More Electric Airplane: A conceptual aircraft design which would eliminate many
different modes of secondary engine power extraction presently in use with an electrical
generator.

neural networks: Information processing systems that learn using models of biological
neurons. In general, neural networks can be thought of as black boxes that accept inputs
and produce outputs; they perform a mapping function. Neural networks have been
applied to solve many different kinds of problems including classification, optimization,
prediction, controls, diagnostics, speech recognition, image processing, etc.
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number of mappings: The number of mappings in an intermediate mapping in the
CMAC scheme; the number of weights summed to compute the output.

overlap: The CMAC parameter used to directly adjust the amount of network
generalization. The overlap is the number of slots in the CMAC look-up table which will
have the same index. The overlap can also be thought of as the size of an individual
neuron's receptive field.

permanent magnet machine: A synchronous machine in which the open circuit

magnetic flux field is provided with one or more permanent magnets.

physical address: tht address in memory in which a weight value is stored.

pole: A structure of magnetic material on whichd a field coil (winding) may be mounted.

power density: The ratio of machine capacity to specific weight [kW/lbs].

Radial Basis Functioa (RBF): A neural network model consisting of three layers of
neurons. The first layer simply serves as the input layer; the middle layer uses a Gaussian
function to model the nonlinearities of the mappings; the third layer produces the output
from a summation of weighted values. The middle layer neurons have locally-tuned
receptive fields.

recall capability: The ability of a network to map the correct outputs given input
vectors with which it was previously trained.

reluctance: The ratio of magnetomotive force to the magnetic flux through any cross
section of the magnetic circuit.

resolution: The CMAC parameter which determines the size of the bins created for the

quantization of input values.

rotor: The rotating member of an electrical machine.

starter/generator: A machine whose intended functions include operating as a motor
drive capable of starting an engine and also as a generator capable of supplying electrical
power to loads.

stator: The sit."ionary portion of an electrical machine. The stator includes the stationary
portion of the magnetic circuit and the associated windings and leads.

switched reluctance machine: An electrical machine which can be operated as either a
motor or a generator. The machine is controlled by switching the phase currents on and off
in synchronism with the rotor.

torque: For a motor, the force in the direction of rotation which opposes the force of
friction and is capable of driving a mechanical load. Torque is produced in a switched
reluctance machine by the tendency of the nearest rotor poles to move to a minimum
reluctance position with respect to the excited stator pole.

training: The process by which a neural network learns the relationship between the
inputs and the desired output. A network is made up of a number of processing elements
that can be connected in different ways. These connections are weighted and during
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learning the weights are adjusted until the desired output is obtained.

Vanadium Permendur: A magnetic material with a relatively high permeability.

virtual address: The weight address for a particular input vector for a CMAC network.
The address is virtual because the number of possible addresses is too large for practical
implementation. The actual weight address is hash coded from the virtual address.

weight adjustment tolerance: The minimum difference between the computAd output
and the desired output that will warrant an adjustment of the weight value

weight table: The set of addresses in which the weight values for a CMAC network are
stored.

wound rotor machine: An electrical machine whose wound rotor carries a polyphase
winding similar to, and wound for, the same number of poles as the stator.

winding: An assemhly of coils on either the stationary or rotating part of an electrical
machine whose sole purpose is the production of the electromagnetic field.
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APPENDIX B

FILTERED INPUTS USED FOR TRAINING
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Voltage Waveforms from File M7klOOv.300
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Current Waveforms from File M7k1OOv.225
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Voltage Waveforms from File M7k1OOv.225
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Current Waveforms from File M15k100l.300
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Voltage Waveforms from File Ml5klOOv.300
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Current Waveforms from File Ml5klOOv.200
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Voltage Waveforms from File Ml5klOOv.200
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Current Waveforms from File Ml5klOOv. 150
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Voltage Waveforms from File Ml5klOOv.150
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Current Waveforms for File M7k1OOv.075
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Voltage Waveforms from File M7k1OOv.075
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